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SUMMARY 

This report contains our studies on applications of the finite-element 

approach to transonic flow calculations, and it includes comparisons between 

different discretization techniques of the differential equations and boundary 

conditions. Transonic flow calculations can be divided into two main categories: 

type-sensitive methods and type-insensitive methods. Finite-element analogs of 

Munnan's mixed-type finite-difference operators for small-disturbance formula- 

tions are constructed, with different strategies used in the subsonic and super- 

sonic regions. In the supersonic region, no upstream effect is allowed; 

blending elements are introduced between different regions. On the other hand, 

as an example of type-insensitive methods, the time-dependent (unsteady) approach 

(using finite differences in time, finite elements in space) is examined. The 

elliptic methods, where the transonic equation is cast into Poisson's form with 

the nonlinear terms as a driving force, provide another example. The report is 

concluded with a general shock-fitting procedure based on discontinuous shape 

functions and with possible extensions to full potential equations. 



INTRODUCTION 

Computations of steady transonic flow can be formulated in terms of 

either the Euler equations or the velocity potential equation; but, regard- 

less of which formulation is chosen, these computations generally rely on one 

of two basic iterative procedures. The first procedure involves integrating 

a set of hyperbolic equations (in time) until a steady state is reached, while 

the second approach makes use of relaxation techniques. 

The hyperbolic procedure is frequently formulated in terms of the com- 

plete unsteady Euler equations, but other hyperbolic forms of the equations 

of motion have also been used. The hyperbolic procedure is attractive 

because a converged solution, which includes both subsonic and supersonic 

regions, can be obtained without making any explicit consideration of the 

mixed character of the flow field. Unfortunately, the convergence to the 

steady state has proved to be quite slow. 

By contrast, the relaxation procedures cannot produce converged solutions 

unless special local (spatial) discretization procedures that account for 

the mixed elliptic-hyperbolic nature of the flow field are used. When the 

local character of the flow field is properly accounted for, however, the re- 

laxation procedures converge much faster than the hyperbolic ones. The choice 

of the most appropriate type of spatial discretization must take into account 

their differences. 

Solutions of the Euler equations in the transonic regime have been ob- 

tained by means of standard finite-difference procedures (based on the 

Lax-Wendroff or the McCormack schemes) as well as finite-volume techniques. 

Solutions of the velocity potential equation have generally relied on the use 
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of type-dependent, finite-difference schemes cf the kind first introduced to 

numerical transonic flow calculations by Murman and Cole (ref. 1). Recently, 

accelerated iteration procedures for finite-difference calculations using 

fast Poisson solvers (elliptic methods) proved to be very efficient. Martin 

and Lomax (ref. 2) used elliptic methods, in the form of a system of first- 

order equations, for cases of small disturbance, while Jameson (ref. 3) solved 

the full potential equation. 

In this report, we examine the application of the finite-element approach 

to transonic flow calculations. We consider hyperbolic, mixed-type, and 

elliptic methods. The appeal of finite:element procedures is twofold. First, 

finite-element procedures are capable of accurately and efficiently enforcing 

boundary conditions, even when the boundaries are geometrically complex. 

(The application of boundary conditions in finite-difference schemes becomes 

very difficult when the boundaries are complex in shape.) Second, finite- 

element procedures reduce the number of grid points (or elements) required 

to achieve a solution of a desired accuracy through the use of efficient, 

higher-order shape functions or mixed finite-element methods. We note that, 

although both of these advantages are important in two-dimensional flows 

(with which we are concerned in this report), they become crucial in three- 

dimensional calculations. 

We have carried over from finite-difference methods as much understanding 

of numerical transonic techniques as possible. More specifically, we have 

made the basic assumption that techniques that are successful in transonic flow 

regimes when using finite-difference methods should also be successful when 

using finite-element techniques, and likewise for techniques that fail. As a 

result, our primary emphasis has been on solving the small-disturbance equation, 
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not the full velocity potential equation. Furthermore, we have been satisfied 

with enforcing boundary conditions on a straight line (in accordance with 

small-disturbance theory). The use of finite-element procedures on this sim- 

plified problem as an end in itself is not justified; finite-difference,methods 

are undoubtedly better suited to the small-disturbance problem. Nevertheless, 

we believe that the feasibility of developing finite-element procedures that 

are capable of handling mixed, elliptic-hyperbolic flow fields can best be 

demonstrated in this simpler environment. Extension to the more complicated 

problems for which finite-element methods are better suited should be simpli- 

fied after the small-disturbance problem has been completed. 

Much of our present effort, therefore, has been spent on solving the 

small-disturbance equation in a rectangular domain with simplified boundary 

conditions, by means of rectangular elements and linear shape functions. This 

simplification not only makes the finite-element procedure easier to apply, 

but also brings it parallel with finite-difference procedures, which have 

proven to be successful in this simplified problem. 

From this "jumping-off" point, we proceed to higher-order shape functions 

with a parallel review of higher-order-accurate, finite-difference procedures 

so that effects that are related to improved accuracy can be separated from 

those that are derived from the basic differences between finite-element and 

finite-difference techniques. Finally, using elements with curved boundaries, 

we consider the solution of the full potential equation and its extension to 

nonrectangular domains. 

One of the most prominent differences between finite differences and 

finite elements that persists even in the simplified problem described above 

is that the matrices associated with finite-element schemes are generally 
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solved by direct methods rather than by the relaxation techniques that are used 

in finite-difference methods. Economically, iterative techniques are usually 

more suitable for large, sparse matrices, whereas direct methods are more 

suitable for more moderately sized matrices. As noted above,Pthemlarger ele- 

ments that can be used for finite elements result in matrices more moderate in 

size, so direct inversion is favored. Later in this report we consider whether 

it is more economical to relax or to invert directly a given matrix system, but 

we note here that there is mathematical basis for selecting one scheme over the 

other. For example, because of the unique properties that are transmitted to 

the matrix when the equation changes type (from elliptic to hyperbolic), re- 

laxation methods could fail while direct methods would succeed. That is, the 

relaxation procedure might diverge even in cases where the inverse of the 

matrix actually exists. 

One of the most important features of transonic flows is shock waves. 

Like finite-difference methods, shocks are either captured or fitted. In this 

report we discuss a general shock-fitting procedure for finite-element calcula- 

tions and we use a simple version in our computations. 

TRANSONIC SMALL-DISTURBANCE THEORY 

The assumption of the existence of a velocity potential, along with re- 

striction to small disturbances, greatly simplifies the transonic flow problem 

while, at the same time, it retains all the fundamental nonlinear, mixed-type 

mathematical properties that are characteristic of transonic flows. Despite 

its relative simplicity, the small-disturbance equation is capable of ade- 

quately describing the transonic flow field around many configurations of 
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practical interest, and it has been used in numerous engineering applications. 

In its small-disturbance form, the transonic velocity potential equation is 

(K- 9,)$,, + @‘yy = f! 3 (1) 

where $I represents the perturbation velocity potential, K represents a 

transonic similarity parameter, and x and y refer to a Cartesian/coordi- 

nate system (see fig. 1). The boundary condition to be applied in the vicinity 

of the body is 

9, = f+(x) - a , - (2) 

where f + represents the body shape and a signifies the angle of attack. 
- 

Consistently with the small-disturbance approximation, this boundary condition 

may be applied on the line y=o. The airfoil surface boundary condition is 

generally complemented by an analytic expression for the far field, which re- 

presents the combined effects of a doublet and a vortex. The formulation of 

the problem is summarized in figure 1. 

In the small-disturbance equation, the sonic line is given by the point 

where Gx = K , and, by inspection of equation (l), we see that when 

@x = K (sonic condition), $I vanishes. This latter condition is enforced 
YY 

explicitly in many numerical schemes. Once +x becomes greater than K , 

the equation changes type and becomes hyperbolic. In the hyperbolic (super- 

sonic) region, the characteristic directions are 

(dx/dy)E = Gx - K , (3) 



I - 

while the shock relations for the small-disturbance velocity potential for- 

mulation are 

2 <K - $x> = - (dx/dy)s 

and 

(4) 

(5) 

where < > and [I II signify the average and the jump across the dis- 

continuity, respectively. 

Related Work on the Small-Disturbance Equation 

In conjunction with our discussion of the small-disturbance equation, we 

mention some related work. Some of this work is related to information that 

can be used to understand the iterative procedure, some is concerned with de- 

veloping more economical iterative procedures, and some describes appropriate 

limitations on the small-disturbance approximations that support the transonic 

small-disturbance equation. 

One interesting study is the work of Sichel (ref. 4), who considered the 

effects of viscosity on transonic flows. In his work, Sichel used the viscous 

transonic equation: 

(6) 



Although his work points out some important limitations of inviscid transonic 

small-disturbance theory, we wish to reference here the direct parallel be- 

tween the physical viscosity term in the viscous transonic equation and the 

artificial (or numerical) viscosity that is used in numerical transonic flow 

studies. We discuss artificial viscosity in later sections. 

Another work of interest is Landahl's investigation (ref. 5) of the un- 

steady transonic equation: 

(K - ox + @t)@xx + ‘!yy = B@,, + y+tt l 

This equation can be construed as representing one of the complete unsteady 

solution procedures described in the Introduction. A second interesting aspect 

of this equation, however, is the so-called low-frequency form of this equation, 

which is obtained by neglecting the high-frequency terms $J tt and Cp t as 

follows: 

(K - $x)@xx + Qyy = @‘,, - (8) 

Equation (8) is closely related to the relaxation procedure used to solve the 

transonic small-disturbance equation. 

Finally, we should enumerate some of the limitations of the. transonic 

small-disturbance equation. The approximations upon which the transonic small- 

disturbance equation are based generally break down near the leading edge of a 

transonic wing. Such leading edges are, for engineering reasons, generally 

blunt, so the flow must turn as much as 90' from its original direction. Turns 

of this magnitude are not allowed in small-disturbance theory. Keyfitz, Melnik, 
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and Grossman (ref. 6) have given more complete consideration of the problem of 

the blunt leading edge. Fortunately, ignoring the details of the leading edge 

region allows acceptable engineering accuracy to be achieved in the remainder 

of the flow field. 

Sirovich and Huo (ref. 7) have tested the validity of the transonic small- 

disturbance equation in the vicinity of the sonic line, while Landau (ref. 8) 

and Guderley (ref. 9) have discussed the details of the flow in the intersection 

between the sonic line and the shock wave. The intersection of a normal shock 

wave with a curved surface has been discussed by Zierep and Oswatitsch (ref. lo), 

who determined the character of the solution near this singularity. 

One transonic phenomenon that we do not consider in this report, but must 

at least mention, is the effect of viscosity in transonic flow regimes. Vis- 

cosity is important in shock-wave boundary-layer interactions and in the 

trailing edge region. Either of these regions can generate local-separation 

bubbles, which substantially alter the flow from its unseparated, inviscid 

state. Some specific works that discuss methods for including these viscous 

effects include those by Melnik and Grossman (ref. 11). 

FINITE DIFFERENCES 

Unsteady Approach 

Magnus and Yoshihara (ref. 12) obtained numerical solutions of the Euler 

equation in the transonic region, using a Lax-Wendroff finite-difference scheme 

(with artificial viscosity) marching in time to the steady state. For small 

disturbances, Magnus and Yoshihara used the following hyperbolic system of 

equations: 



U t.= (K - u>ux + v , 
Y 

v, = -vx + u . 
Y 

(9) 

(10) 

The calculations were too lengthy and expensive, and, hence, this method 

was abandoned. 

Murman's Fully Conservative Scheme 

One of the n:ost popular techniques for solving the transonic small- 

disturbance equation (TSDE) is Murman's fully conservative, type-dependent, 

finite-difference scheme, or variants of it (see ref. 13). As indicated in 

figure 2, Murman's scheme is characterized by four distinct operators: an 

elliptic operator E for subsonic regions; a hyperbolic operator H for 

supersonic regions; a parabolic operator P for points on (or near) the 

sonic line; and a shock-point operator SPO for enforcing the jump conditions 

across the shock. The elliptic operator is based on a second-order-accurate, 

central-difference formula, while the hyperbolic operator is obtained from a 

first-order-accurate, backward-difference representation. The remaining two 

operators, the parabolic operator and the shock-point operator, represent 

blending elements for grid points on the boundaries between elliptic and hy- 

perbolic regions. 

The four finite-difference operators described above can be used to con- 

vert the continuous, partial differential equation (1) into a discrete system 

of algebraic equations which describe the behavior of the solution at a 

fixed set of points in the flow field. The system of equations generated 

by this discretization is generally solved by a line-relaxation algorithm 
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which iteratively sweeps the matrix, line-by-line, .from left to right. 

During the relaxation process, the solution is over-relaxed (w ' 1) in the 

elliptic.region, but in the remainder of the field it is usually mildly under- 

relaxed (w < 1) . Since this discretization scheme is only first-order - 

accurate in the supersonic region, it is first-order accurate overall. Be- 

cause of the relative simplicity of the scheme, the low accuracy can be 

offset by using a finely divided mesh. 

We note that, in the far field, the doublet strength due to the flow 

around the body is given by 

D= JJ if dx dY + Dlinear l (11) 

As can be seen, the doublet strength depends on the solution itself. The 

double integral is generally updated at selected intervals during the 

iterative procedure so that when the solution converges, the far-field 
* 

representation i.s intimately tied to the numerical solution (and conversely). 

The use of this analytical representation of the solution far from the 

airfoil greatly decreases the domain included in the computation. 

A series of sample calculations, which have been obtained from Murman's 

fully conservative scheme and which indicate the influence of various factors 

in the scheme on the final solution, are given in figures 3A through 3C. 

* 
We also note that Cheng and Hafez (ref. 14) have shown that the far-field 
behavior near the boundary may be fitted by using a least-squares technique; 
thus , performing the double integration over the entire flow field is no 
longer necessary. 
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The base case, which is designated as "Case Al" in the figure, includes all 

the factors in the Murman scheme, as described above. Unless otherwise noted, 

these calculations are for a uniformly-spaced grid system in both the x 

and y directions, with 10 grid points on the airfoil surface, 10 points up- 

stream of the leading edge, and 10 points downstream of the trailing edge. 

The first comparison (fig. 3A) demonstrates the effect of the shock- 

point cperator on the final results. As shown, the shock-point operator 

allows a much more rapid velocity change across the shock (compare Cases Al 

and Bl in fig. 3B). The comparison between Cases Al and Cl shows the effect 

of incorporating the far-field solution (Case Al) instead of enforcing a 

homogeneous boundary condition (@ = 0) at the same point (Case Cl). Case Dl 

shows the effect of placing the leading and trailing edge points halfway be- 

tween grid points, compared to the effect of placing grid points on the leading 

and trailing edge points. The results in figure 3C show that the apparent 

shape of the airfoil is altered when the positions of the leading and trailing 

edge points are shifted with respect to the grid system. This effect is 

amplified in the present case by our use of a relatively coarse grid system. 

Also in figure 3C, we show the effect of halving the grid size. Cases Dl and 

Hl show the higher degree of accuracy that can be obtained with the finer 

grid system. 

Among other considerations that are directly related to numerical methods 

are those techniques concerned with accelerating Murman's relaxation solution 

so that convergence can be obtained more rapidly. One such approach is the 

use of extrapolation techniques, such as those reported by Cheng and Hafez 

(ref. 15) and Caughy and Jameson (ref. 16). Extrapolation techniques attempt 

to accelerate the painfully slow iterative procedure by obtaining numerical 
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estimates of the dominant eigenvalues in the finite-difference matrix and by 

using these eigenvalues to extrapolate the iteration to a level much closer 

to convergence. Such extrapolation techniques have exhibited time savings of a 

factor of 4 to 5 over the more conventional line-relaxation procedures. 

A second acceleration d&vice, which has proven very effective for 

finite-difference calculations, is one that replaces the nonlinear transonic 

equation with a Poisson equation having the nonlinear term as a right-hand-side 

term. The matrix corresponding to the constant-coefficient elliptic (left- 

hand-side) operator is then solved by a direct inversion technique. Based 

on this interim solution, the nonlinear (right-hand-side) term is updated, and 

the "fast-solver" is again employed. With this technique, convergence has been 

very rapid (generally less than 10 of these major iterations), provided the 

supersonic region is treated properly. If no special treatment is applied 

for the supersonic region, the procedure fails. Very impressive results (in 

terms of the amount of computer time required) have been reported by both 

Martin and Lomax and by Jameson (see refs. 2 and 3). In their studies, 

slightly different techniques were used for treating the supersonic region. 

These are discussed more fully in the following section, A Fully Conservative, 

Second-Order Scheme for Finite Differences. 

Two additional studies that are concerned with developing more rapid com- 

putational procedures are also in progress. Ballhaus and Steger (ref. 17) 

and Jameson (ref. 3) are using alternating-direction implicit methods, based on 

an efficient matrix factorization technique for solving the Euler equations. 

The second approach is a multi-grid technique being developed by Brandt and South 

(ref. 18). This technique solves the transonic equation on a series of grid 
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spacings which vary from fine to coarse and fine again. The basis of this pro- 

cedure is to increase the speed of the iterative relaxation process by 

diminishing the error in a different segment of the frequency spectrum of the 

matrix with each distinct grid system. 

Another acceleration technique is the use of discrete, shock-fitting pro- 

cedures, which have been reported by Cheng and Hafez and by Yu and Seebass 

(see refs. 15 and 19). Shock-fitting really has no capability for increasing 

the speed of the relaxation process; however, it indirectly achieves such 2.n 

improvement. Shock-fitting is really concerned with improving the spatial 

discretization so that shock waves can be handled with a relatively coarse mesh 

(compared to the extremely fine grid that must be used when the shock is not 

fitted). The coarse grid that is used with shock-fitting decreases the amount 

of computational time by reducing the number of unknowns (grid points) to be 

computed. 

A Fully Conservative, Second-Order Scheme for Finite Differences 

As indicated in the previous section, Murman's fully conservative finite- 

difference scheme is accurate only to the first order. The low accuracy occurs 

because upstream effects are not allowed in the supersonic region, and, hence, 

one-sided differences must be used in that region. The numerical scheme is 

therefore (formally) less accurate in supersonic regions than in subsonic 

regions, where central differencing is employed. To make the accuracy in the 

supersonic region comparable with that in the subsonic region (thus making 

the entire calculation second-order accurate), we may use either of two methods. 

We can include more grid points in the computations for supersonic points, or we 
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can turn to e Hermitian scheme in which both $I and its derivatives are stored 

end used at each grid point. 

One reason for considering a finite-element scheme is the premise that, 

through the use of a more accurate local representation of the solution, the 

total number of grid points can be decreased, and, thus, the computer storage 

requirements, as well as the central processor time requirements, can be 

reduced. Such goals are particularly urgent for three-dimensional transonic 

flows. With the goal of improved accuracy in mind, we consider first the 

requirements that are imposed on a finite-difference scheme when it is extended 

to higher accuracy. It seems reasonable to expect that those problems encoun- 

tered in a second-order-accurate, finite-difference scheme would also be present 

in a finite-element scheme, so their solution should give some indication of 

whether a given finite-element technique will be successful. 

Murman and Cole suggest an implicit, second-order-accurate, backward 

difference scheme as an alternate to the first-order-accurate, backward dif- 

ference scheme that was used in the supersonic flow region. They hinted in 

their paper (see ref. 1), and it has been verified since, that calculations 

employing this second-order-accurate, backward difference scheme sometimes 

diverge during the relaxation iteration. Because of this difficulty, nearly 

all velocity potential calculations have been made with schemes accurate only 

to the first-order. 

More recently, Warming and Beam (see ref. 20; see also Martin's work, 

ref. 21) have extended Murman's fully conservative scheme to the Euler 

equations. Although they were primarily concerned with the Euler equations, 

Warming and Beam suggested (but did not test) a second-order-accurate, back- 

ward difference scheme for the transonic small-disturbance equation, including 
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a shock-point operator and a. parabolic point. We note that Murman's, as well 

as Warming and Beam's, second-order backward difference scheme is both dis- 

sipative and dispersive compared to Richtmeyer's standard (non-dissipative) 

scheme (see figs. 4A and 4B). The important questions concerning these 

second-order schemes, especially in our finite-element context, are why 

is the second-order-accurate scheme of Murman so much less reliable than 

his first-order scheme and will the alternative proposal of Warming and Beam 

alleviate this problem? 

We begin by considering the latter of these two questions. We incorporated 

the second-order-accurate scheme of Warming and Beam into our version of Murman's 

code and tested it. The results of a few numerical experiments quickly showed 

that it fared no better than Murman's second-order-accurate scheme; it failed 

to converge reliably. We believe that the reason for the failure of both of 

these second-order-accurate schemes is closely tied to the parabolic point and 

its function in stabilizing the finite-difference scheme. Consequently, before 

presenting the modifications required to make second-order-accurate schemes 

converge, we first review the purposes for using the parabolic point. 

The parabolic point in a finite-difference scheme serves the following 

three purposes: 

a. First, it excludes the possibility of expansion shocks. In other 

words, the parabolic point ensures that the fluid experiences, at most, 

a finite (and not an infinite) acceleration. This point can be seen easily 

from the transonic small-disturbance equation itself: 

(12) 
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At the sonic point, we have 

K-+x=0, (13) 

which indicates that 4 
YY 

= 0 at t.he sonic point only if + is bounded. xx 

b. The second purpose of the parabolic point is to ensure consistency 

in the flux conservation across the sonic line, where the switching operators 

are employed. 

C. Third (and perhaps most importantly) the parabolic point guarantees 

that the discretized system matrix can be inverted (and, if possible, constrains 

it to remain positive definite). To explain this point, we consider node 

pl in figure 4C. At point Pl the test of whether the node is to be treated 

as subsonic or supersonic is based on the sign of the coefficient K-$I which 
X 

is evaluated by means of central differences. Since the point Pl is (by 

definition) supersonic, a backward difference at pl creates an inconsistency 

in the matrix which is removed when the parabolic condition @ 
YY 

= 0 is applied. 

All three of these conditions are satisfied in the first-order-accurate, 

backward difference scheme if a single parabolic point is introduced; however, 

the same is not true for second-order schemes. In particular, point P2 (see 

figure 4C) again introduces an inconsistency into the matrix if a second- 

order-accurate, backward difference scheme is used there. At successive 

supersopic points downstream of point P2 , the second-order-accurate, backward 

difference formula can be applied without difficulty. Consequently, our sug- 

gested remedy is to introduce cot one, but two parabolic points at the sonic line 

when second-order schemes are used in the supersonic region. 
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Using two parabolic points, we have done numerical experiments in which 

second-order-accurate formulas were used in both the'subsonic and supersonic 

regions. The results have shown that the second-order schemes do converge 

reliably (with about the same number of iterations as is required for first- 

order schemes) when the second parabolic point is added. In order to obtain 

a second-order system that is completely analogous to Murman's first-order 

scheme, we also consider the requirements of a shock-point operator in a 

second-order scheme. 

The shock-point operator serves some analogous (though not completely 

identical) purposes in cases where the flow switches from supersonic to 

subsonic, as the parabolic point does when the flow goes from subsonic to 

supersonic. When decelerating through the sonic point (whether discontinuously, 

as across a shock, or continuously, as across a decelerating sonic line), we 

introduce the shock-point operator for the following purposes: 

a. The shock-point operator allows for a discontinuity in Gx . 

b. The shock-point operator ensures a consistent flux conservation in 

the presence of switching operators. 

C. The shock-point operator guarantees that the discretized system 

matrix can be inverted (and that it is positive definite, if possible). 

Note that, except for the first, these purposes are identical to those of 

the parabolic operator. Item (a) in the parabolic list ensures that (expansion) 

shocks cannot occur; item (a) in the shock-point list ensures that (compression) 

shocks can occur. 

To introduce our shock point, we start by analyzing Murman's 

shock-point operator for the first-order-accurate scheme. Using the 

nomenclature in the sketch below, 
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i we have from equation (12) 
I 

(Ku1 - %u:) - (Ku3 - +) + k2 $ j+l - 2$i j + Gi jai) = 0 . (14) 
AY , , , 

~ 

~ Then, by adding and subtracting the quantity, Ku2 - %u; , Murman obtains 

(Ku1 - %u;) - (Ku2 - &u;, + (Ku2 - %u;) - (Ku3 - %u > : 

+A (c$ 
Ay2 

i,j+l -24. ++ 
l,j i,j-1 = > 0, (15) 

or K- +(u, + u2> 1 (ul - u2) + K - %(u2 + u3) I (u2 - u3) 

+ AE ($i,j+l - 2~i j + @i j-1' = O ' 
Ay2 9 , (16) 
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Murman then linearizes equation (16) by evaluating (ul + u2)/2 and 

(u2 + u3)/2 using the most recent available values. Extensive numerical ex- 

periments have confirmed that the resulting scheme is stable and that the 

iteration converges with extremely good reliability. 

The introduction of the shock-point operator for our second-order-accurate 1 

operator that is analogous to Murman's and then consider the one suggested by 

Warming and Beam (see ref. 20). Emphasis in both of these cases will be on 

satisfying all three of the purposes outlined above. 

We use the notation in the sketch below. 

x u4 " u3 n X 
i-3,j i-2,j i-1,j 

We allow a discontinuity in $x between points i-l and i and obtain 

an elliptic shock-point operator with a derivative boundary condition for the 

velocity u2 downstream of the shock. This boundary condition must be consisten 

with the locally normal shock-jump relation 

i 

scheme must also be done with care. We begin by first considering a shock-point 

u2 = 2K - u3 ; 

together, they give 

20 
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Numerical experiments with this scheme have indicated that it allows reliable 

convergence in the relaxation iteration and that the results converge to the 

same limit reached with Murman's first-order-accurate scheme. 

We have also obtained a second-order scheme that is formally equivalent to 

the one suggested by Warming and Beam. To obtain this scheme, we replace 

equation (17) by 

u2 = 2K - (2u3 - u4) 

and substitute equation (19) into equation (18). Again, we obtain a stable 

scheme. Some results are given in figure 5. The effect of the shock-point 

operator is distinguishable in the fine grid calculations. 

Use of an Elliptic Solver --- 

In all numerical techniques for solving the transonic equation, some method 

of linearization is used to convert the nonlinear equation into a system of 

linear equations, which can then be solved by various means. The specific tech- 

nique for linearizing the equation has a considerable effect on the amount of 

computer time that will be required to obtain the solution and may even determine 

whether the iteration for the nonlinearity converges or diverges. We now attempt 

to classify some methods for linearizing the equation, with emphasis on under- 

standing how and why the Poisson technique works. 

a. Picard (linearization by freezing coefficients) 

(20) 
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b. Rayleigh-Janzen (linearization about the equivalent incompressible 

flow) 

(21) 

C. Newton-Raphson (Let $I n+l = ($n + &#) , hence J&j = -R(Gn) where J 

is the Jacobian and R($n) is the residual. As a special case of this 

method, J (@> is approximated by 3 independent of n.) 

[ 
K- (c); + 6glx) 1 #, + Qxx> + qy + Qyy) = 0 ' 

which, neglecting second-order terms, gives 

(K - $$6$,, + 6eyy - $'n,xs+x = -R(@n) 9 

where the right-hand side is the residual 

(22) 

(23) 

Note that the Picard iteration is basically Murman's scheme (except the linear- 

ized coefficient is updated during the iteration instead of after it), the 

Rayleigh-Janzen scheme is the one chosen by Martin (ref. 21) and is discussed 

at length below, while the Newton-Raphson scheme is similar to iterative 

schemes based on the unsteady small-disturbance equation. 
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In the Newton-Raphson scheme, the differential operator 

a2 a2 
(K - 0:) -2 + -2 - G;, k , 

ax ay 

which is the Jacobian of the small-disturbance equation, is of mixed 

type and switches character at the same location the original equation 

does. If we represent the Jacobian as 

a2 a2 4-a 
ci ax2 + ay2 + Ax ax ’ 

(24) 

(25) 

we note that it is very similar to the unsteady, small-disturbance equation, 

(K - $x)@xx + +yy - 2@xt = o ' (26) 

where b-e associate Q with C$ n+l 
xt X 

- @; - 

The convergence of these iterative methods for the case of elliptic 

equations has been studied extensively; however, their application to tran- 

sonic flow represents an,entirely different problem. Martin and Lomax (ref. 2) 

have suggested an iterative procedure for transonic flow, which is identical to 

the Rayleigh-Janzen technique. More specifically, they linearized the transonic 
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equation by placi,ng the nonlinear term on the right-hand side and then solved the 

resulting Poisson equation by a direct matrix inversion Cfast elliptic solver). 

After each iteration, the nonlinear right-hand side was updated. Their initial 

efforts were successful for transonic solutions that included very small super- 

sonic regions; however, after applying special stabilizing procedures, they were 

able to extend the technique to free-stream Mach numbers, which allowed much 

larger supersonic bubbles. The obvious question that this technique raises 

is: How can a mixed-type equation be solved as a series of Poisson equations? 

Jameson has reviewed this iterative approach and has shown that the tech- 

nique fails for purely supersonic flows (see ref. 3); however, with the addition 

of an additional de-symmetrizing term to the Laplacian, the iteration can be made 

to converge, even in supersonic flow. Thus, we consider the solution of the 

equation 

“Wxx + -Wn> (27) 

and use central differencing for SC+ xx and 6@yy but use backward differencing 

for $, (and R(@n)) , to obtain 

2 
+ ayy(Qi,j) = -Ax2Ry j 3 

, (28) 

where axxf = f. I-1,j -2f. +f 
l,j i+l,j and ayyf = f. l,j-1 -2f +f 

i,j i,j+l ' 
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For supersonic flows with periodic boundary conditions, the Von Neumann stability 

analysis shows that stability is obtained when f3 > 2cl + IKR] , where 

KR = K-4, . If B is chosen in this manner, we can use a fast direct solver to 

invert the left-hand side. Thus, we see that, if we attempt to solve the 

hyperbolic equation by a series of "elliptic" operators, we must add the (large) 

term B$,/Ax to ensure stability. 

A heuristic analysis of this de-symmetrized operator shows that when 

B/Ax is large enough to ensure stability, the operator is no longer elliptic. 

For example, consider the following difference scheme in the x direction: 

(Ax2)Lx = cia,,6@ + B(s@i - 6$Q 

which, after we regroup the terms, becomes 

(Ax2)Lx = (c1 - B)Qi-1 - (2a - ‘)Qi + “‘i+l ’ 

Defining the new parameter 

a' = (2a - 8)/Z , 

we can rewrite equation (30) as 

@i-1 - 2cc'41i + 

(29) 

(30) 

(31) 

(32) 
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which is a valid approximation for 

LX 
xx + O(Ax2) ] + 2 [Ox + o(ax2)]. (33) 

It is immediately obvious that the type of equation (33) depends upon the sign 

of a' , which can, in turn, be controlled by the magnitude of B . Thus, if 

B ' 2% , the equation becomes hyperbolic, and we see that the Von Neumann 

criterion for stability in supersonic regions is equivalent to requiring that 

the left-hand side operator be made hyperbolic. 

If we now return to equation (27) and use central differencing for Gx , we 

see (by again following our heuristic argument) that it is not possible to change 

the type of the equation. Similarly, the Von Neumann condition also indicates 

that the Poisson iteration for the wave equation will not converge when central 

differencing is used for the a/ax term. Thus, we see that it is not this term 

alone, but rather the unsymmetrical differencing of it, that allows convergence. 

The introduction of the asymmetric term ax in backward-difference form is neces- 

sary for convergence because it removes the elliptic nature of the left-hand side 

operator and causes it to be hyperbolic. 

We have conducted a numerical experiment based on this idea by using a line- 

relaxation version of the analysis of Martin and Lomax. Instead of using the 

primitive variables u and v , we use the velocity potential $I . The line 

relaxation should effectively introduce the precise term ext (or 6ex) , which 

is needed for convergence. The solution does indeed converge and the results 

are shown in figure 6. 

The special stabilization procedure referred to above, which Martin and 

Lomax used, was a ut term. The use of this de-symmetrizing term allowed them 
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to extend the technique to transonic flows with large supersonic bubbles. As we 

noted above, we argue that this de-symmetrization term is effective because 

it changes the type of the left-hand side operator in the supersonic region so 

that it is no longer elliptic. 

FINITE ELEMENTS 

Hyperbolic Methods 

Finite-element procedures can be applied directly to hyperbolic schemes; 

in particular, the Lax-Wendroff scheme applied directly over the finite-element 

formulation (finite element in space, finite difference in time). Thus, if we 

consider a Taylor series expansion in time, we have 

u(t + At) = u(t) + ;At + &At2 , 

and if 

au aJ? (u> PC--- 
at ax 9 

we can express 

. . a 
U=ax 

where A is the Jacobian of F(u) , 

(34) 

(35) 

(36) 
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aF 
A i =- 

ij au. . 
J 

Hence, 

At2 a u(t + At) = u(t) + g At + -yj-- z . (38) 

Examples of using finite-element procedures to solve Lax-Wendroff schemes such 

as these have been given by Oden (ref. 22), who used a Galerkin procedure. 

If an explicit artificial viscosity term is added, we obtain an equation 

that is similar to the one studied by Wahlbin (ref. 23). When the explicit 

artificial viscosity term is added, the transonic equation, in its small- 

disturbance form, becomes 

Ut 
= KRux + vy + EuXX , (39) 

Vt =u -v . 
Y x 

If we now represent the velocity in terms of a shape function $ as 

(40) 

(41) 

(42) 
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and apply a Galerkin procedure, equations (39) and (40) become 

pi Ui,t ~j) dx dY =//(K~ $i,x Ui VJj) dx dy 

Vi ~j) dx dY +lJ (' pi, xx Ui ~j) dx dY (43) 

and 

Jli Vi t $j) dx dY = ~~(~i y Ui ‘bj) dx dy -J/(‘J’i x ‘i ‘J’j) dx dY * 
, , , 

(44) 

These can be written in the more compact form 

dU 
M i - = ij dt K K..U. + CjiVi + Ed..U. 

R J1 1 =J 1 

M 
dVi 
- = C ij dt U - K..V. ji i J1 1 

by defining the matrices 

(45) 

(46) 

M = ij SJ ~i~jdx dY , (47) 
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K = lJ a% 
ji ax ~jdx dY ~ 

JJ a@. 
C 

ji = ~~jdx dy , 

D 

(48) 

(49) 

(50) 

For the special case of linear shape functions and rectangular elements, 

the functions Qi become 

743=f3 
12 

Q2=P 1-E 
1 ( 1 2 

$,= l-F? 
( 1 12 

so that the matrices C, D, K, and M become so that the matrices C, D, K, and M become 

C hl 
ji=iT 

(51) 

(52) 
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D h2 
ji=bhl 

K h2 
ji=12 

and 

M hlh2 - 
ji 36 

[ 

2 

-2 

-1 

1 

[ 

-2 

-2 

-1 

-1 

r 

I 
4 

2 

1 

2 

-2 

2 

1 

-1 

-1 

-1 

-2 

-2 1 

(53) 

(54) 

(55) 

Implicit schemes are recommended for solving either these systems or 

ordinary differential equations in time so that stability restrictions can 

be avoided, especially in the latter case where the $tt term appears. 

Kreiss and Scherer have reviewed the convergence of iterative schemes 

such as these (see ref. 24) and have shown that they are always stable for 

semi-bounded operators. Swartz and Wendroff have reached similar conclusions 

for Burger's equation (see ref. 25). The disadvantage of using techniques of 

this type is that the mass matrix must be inverted at each step.. This 

effect can, however, be diminished by going to the lumped mass formulation. 

In passing, we mention that, instead of the Galerkin method, the least- 

squares method may be used (in space) in the same way Carasso solved the wave 

equations (ref. 26) and a coupled system of wave and heat equations (ref. 27). 
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We also mention an interesting work by Mote (ref 28). Mote has considered' 

the use of global-local finite elements, where the known characteristics of 

the global solution to the problem of interest are exploited. For example, 

the global behavior of the incompressible flow solution could be used in a 

global-local scheme for transonic flow. Note, in addition, that some global 

methods (in the classical sense of Ritz) have been applied to compressible and 

even transonic flow as early as twenty years ago by Wang (ref. 29). His 

computations did not include any shocks, although he suggested a shock-fitting 

procedure. 

Finally, we should note the important parallel between transonic flow and 

shallow-water theory. The hydraulic analogy leads to equations of motion that 

are identical to the transonic equations if the ratio of specific heat y 

is taken to be 2.0. A comparison between finite-difference and finite-element 

techniques for shallow-water theory has been given by Weare (ref. 30). We note 

without comment that he concluded finite-difference procedures were more 

economical for this problem (see also ref. 31). 

Mixed-Type Methods 

Introductory Remarks - Some Simplified Models for the Transonic 
Small-Disturbance Equations 

According to the transonic small-disturbance approximation, the stream- 

lines are almost parallel to the x axis, and the nonlinear effects occur only 

in the x terms, as can be seen directly from the following small-disturbance 

equation: 

(56) 
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A one-dimensional version of this equation, 

has been studied by Bauer et al. (ref. 32). By treating P as a general 

matrix and $ as a vector, we can extend Bauer's equation to the more 

versatile form 

(Wx - wf), + P$ = 0 , 

(57) 

(58) 

which corresponds to not one, but a system of, ordinary differential equations. 

This latter system, equation (58), is almost identical to the transonic equa- 

tion, and it can be obtained from the transonic equation by a step that we shall 

refer to as semi-discretization. By semi-discretization, we mean that $I 

is continuous in x , but is discrete in y . As an example, we can use 

central differencing to approximate @ 
YY 

in equation (56) and so can arrive 

immediately at equation (58), where the matrix P is given by 

1 p=- 
Ay2 

-2 1 

1 -2 1 
\ \ 
\ \ \ 

\ \ \ 
\ \ \ \ \ \ 

\ \ 
1 22 '1 

2 -2 

(59) 
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To complete the system, we must modify the first and last rows of P by 

applying the boundary conditions.* Similar representations can also be ob- 

tained by applying the Method of Moments or by applying a finite-element 

technique in space (in the y direction only)‘. 

After some appropriate discretization in y has been applied to the tran- 

sonic equation, the resulting equation (58) can be categorized for either 

subsonic flow or supersonic flow by the following two classical systems of 

equations: 

a. The case of subsonic flow is closely analogous to the two-point boun- 

dary value problem 

- (Q@,>, + W = 0 , 

which is the one-dimensional, steady-state heat equation. 

b. The case of supersonic flow is closely analogous to the initial 

heat value problem 

- (M;)' + P$I = 0 , 

(60) 

(61) 

which is the equation for a mass-spring system. 

A separate body of literature exists for each of these equations; tran- 

sonic flow represents a combination of both of them. In the subsonic region, 

the equation is elliptic (boundary-value in nature), while in the supersonic 

* 
Note that P can be diagonalized: A system of uncoupled ODE's can be con- 
structed if the eigenvalues and eigenvectors of the matrix are known. 
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region it is hyperbolic (initial-value in nature). The nonlinearity of the 

transonic equation is essential since this nonlinearity is responsible for the 

transition from one region to the other. The nonlinearity also permits com- 

pression and expansion shock waves to occur (i.e., a discontinuous transition 

from hyperbolic to elliptic). 

The application of finite-element techniques to the two-point BVP 

corresponding to equation (60) is well established. Applications of finite- 

element procedures to initial value problems, like equation (61), have also 

been used in the field of structural dynamics; however, usually finite- 

difference methods are used for this equation. Thus, the general pattern 

is that finite-element procedures are used more often than finite-difference 

procedures for boundary-value problems, but that finite-difference techniques 

are used more frequently for initial-value problems. In the present transonic 

case, the question of which technique to use is not as obvious since the tran- 

sonic equation is of mixed-type and encompasses both types of equations. 

A Comparison of Various Discretization Techniques 

In this section we compare three distinct methods that can be used to 

discretize a partial differential equation. These three methods are finite 

differences, finite volumes, and finite elements. 

Discretization methods. - The construction of a finite-difference scheme 

is usually based on a Taylor series expansion. The stability of'the resulting 

difference scheme can then be easily investigated in a linear, local sense by 

applying the Von Neumann stability analysis, as long as the grid system is 

rectangular. Heuristic stability analyses, which again rely on a Taylor series, 

can also be useful in categorizing the truncation error as either dissipative 
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or dispersive. Boundary conditions are easily included in a finite-difference 

scheme when the boundaries are rectangular, but when the boundaries become 

nonrectangular or irregular, their finite-difference representations become 

cumbersome and inaccurate. Thus, the application of boundary conditions or 

irregular boundaries represents one of the key weaknesses of finite-difference 

procedures. 

In the finite-volume technique, the principal idea is to convert the 

differential equation into its integral form before applying discretization pro- 

cedures. The advantage of this approach is that it transforms the differential 

equations, which are really mathematical expressions of certain conservation 

laws, into a form that allows the conservation of these same quantities to be 

verified and enforced easily in the discrete system. 

The third type of discretization, finite elements, can be obtained by 

applying either a variational principle (such as the one used in classical 

mechanics) or a weighted residual method. The weighted residual methods, in 

turn, include Galerkin techniques and least-squares methods. Finite-volume 

techniques can be considered as specific realizations of the method of weighted 

residuals (the method of subdomains). 

Applications of discretization techniques to elliptic probl.ems. - The 

classical five-point formula for the Laplace equation represents an interesting 

example of the application of the three techniques described above (see Varga's 

discussion). For the case considered here, the same five-point formula can be 

derived by means of a Taylor series expansion (finite difference), by conser- 

vation of flux across imaginary boundaries (finite volume), or by means of 

finite-element techniques based on triangular elements and linear shape functions 
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as shown for the first time by Courant.* Although all these techniques lead to 

identical results'for the Laplace equation on a uniform grid system, in general, 

they lead to different schemes. 

As an example of the types of differences that are generated when the 

three techniques are applied in more general circumstances, we again consider 

the Laplace operator; but this time, instead of considering the five-point 

formula, we consider the nine-point scheme in the sketch below, 

5 
4. 

Y 
1 

,, 4 .r 4 1, 1, 
-20 

1 -4 1 n 

which can be expressed as the linear combination of the following two five- 

point formulae. 

* 
Birkhoff and Gulati (ref. 33) have noted that Courant's derivation of the 
five-point formula for the Laplace equation, which is based on the Ritz 
variational method, does not generalize to the Poisson or Helmholtz equation. 
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Finite-volume techniques, which are based on replacing the area integral 

by an equivalent line integral (Gauss's theorem) in the following fashion, 

give a result which is equivalent to the finite-difference representation 

1 1 

x 

-4 

1 1 

if linear shape functions are used on rectangular elements, with a weighting 

function, which is unity, inside the domain and zero outside. Note that be- 

cause of the cancellation on the interior sides of the line integration, only 

the corner points appear in the finite-volume representation. 

Finally, the use of finite-element techniques based on a variational 

principle, result in a discretization that can be expressed as 
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I 

and that, in finite-difference terms, is equivalent to the equally weighted 

sum of the finite-difference formulae 

One i-Y/% Plus One )(;l 

1 

Birkhoff and Gulati have considered general discretization procedures for 

linear source problems, with a view towards determining optimal, few-point 

representations (see ref. 33). Their comparative study considers both five- 

point and nine-point discretizations on regular mesh, along with some 

discussion of the three-point analogs for the corresponding one-dimensional 

case. The results show that global accuracy of five-point formulae could 

never be greater than O(h) when the grid was nonuniform, nor better than 

O(h2) when the grid was uniform, regardless of how the formulae were obtained. 

This accuracy is, of course, exactly the accuracy that is cbtained with standard 

five-point, finite-difference formulae. They also demonstrated that the opti- 

mal accuracy for the nine-point formula was W4> with a uniform rectangular 

mesh and that it deteriorated to O(h2) for a nonuniform mesh. This order of 

accuracy is equivalent to that achieved by the Rayleigh-Ritz method, with 

bilinear approximating functions. 

As an example of the use of higher-order elements, we consider the ap- 

plication of piecewise-continuous cubits to the discretization step. The 

dependent variables can be represented by cubits through the use of three 

distinct elements (shown in the sketch below): (1) cubits for which cnly the 

function itself is constrained to be continuous at the nodes (e.g., serendipity 
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elements); (2) Hermite cubits for which the function and its (two) first deri- 

vatives are continuous at the nodes; and (3) cubic splines (tensor product 

of a one-dimensional spline) whose second-derivatives are continuous at the 

nodes. 

i, El i‘i (1) (2) (3) 

Since cubic splines require more grid points and are restricted to rectangular 

elements, we actually compare only the Lagrange and Hermite cubits. The 

Hermite cubic formulation seems to be more accurate. Later, we give some 

numerical results for incompressible flow over a parabolic-arc airfoil to 

demonstrate this accuracy. For the sake of comparison, we also discuss a mixed 

variational principle that uses linear shape functions in $I , u(=$~> and 

v(=9,> * As noted previously, such lower-order elements can be used in con- 

junction with extrapolation techniques (such as Richardson's) to obtain 

higher-order accuracy. 

Wheeler (ref. 34) has analyzed another method of obtaining very accurate 

approximations of the flux values at particular points in the domain for the 

two-point boundary value problem. This method is based on evaluating the moment 

of a Galerkin solution of the problem, and it reduces the errorin the flux 

from O(hr> to O(h2') . Such improvements in the computation of the flux 

appear quite attractive for a velocity potential solution for which the flux is 

the principal quantity of interest. 
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Applications of discretization techniques to hyperbolic problems. - For the 

wave equation, the literature can be divided into two categories, namely, those 

algorithms that.use finite-element techniques in space but finite differences in 

time, and those algorithms that use finite elements in both space and time. It 

is interesting to note that most of the work concerned with developing mathemat- 

ically rigorous proofs of the characteristics of the discretized system have 

used a combination of finite-element and finite-difference techniques, while 

most of the work using only finite elements has been more engineering oriented. 

Examples of work in the first category include the efforts of Birkhoff 

and Dougalis (ref. 35), Swartz and Wendroff (ref. 25), Swartz (ref. 36), 

Vichnevetsky and De Schutter (ref. 37), Vichnevetsky and Pfeiffer (ref. 38), 

and Goudrea and Taylor (ref. 39). On the basis of their work on the wave equa- 

tion, Birkhoff and Dougalis recommend the Numerov scheme, which is a combination 

of both finite differences and finite elements in space. The Numerov scheme 

takes advantage of the fact that the phase errors in finite-element and finite- 

difference schemes are opposite in sign, and by the use of a proper combination 

of the two phase errors, obtains a scheme with excellent dispersive properties. 

Goudrea and Taylor evaluated different numerical integration methods in 

structural dynamics, including the methods of Newmark, Wilson, and Houboult. 

Argyris et al. (ref. 40) have generalized the New-mark family of schemes and 

they were able to obtain unconditionally stable schemes by incorporating 

a few simple modifications. 

Finite-element techniques in space and time have been studied by Argyris 

(see refs. 40 and 41), Fried (ref. 42), and Zienkiewicz and Lewis (ref. 43). 

The work of Argyris and Fried is based on Hamilton's principle. In their 

work, they do not allow the function at the end point to vary (as is tradition- 

ally done in a Hamiltonian approach), but they do allow the magnitude of the 
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initial velocity to vary. This method is similar to the method of inverse 

shooting, which was used in our previous paper (ref. 44). In that work we also 

replaced the initial value problem by an equivalent boundary value problem. 

Zienkiewicz and Lewis have based their work on Galerkin or least-squares 

techniques. They use Hermite cubits and consider both the end position and the 

velocity as unknowns; thus, they obtain a series of weighted residual equations. 

Some algebraic examples of finite-element formulae for initial value and 

boundary value problems. - To illustrate the differences between these various 

discretization techniques, we consider a simple, one-dimensional example problem: 

@ xx - (I = 0 . (62) 

We have constructed formulae for both elliptic (boundary value) and hyperbolic 

(initial value) problems (using Hermite cubits as shape functions) for each of 

three finite-element procedures, namely, the Hamiltonian, the Galerkin, and the 

least-squares techniques. The results are summarized in figures 7 and 8, where 

we present the influence coefficients corresponding to equation (62) for the 

node between two adjacent (one-dimensional) elements. 

As an example, we describe the procedure for determining the Galerkin 

results in detail so that the diagrams in figures 7 through 9 can be more 

clearly understood. 

We define the numerical representation of 4 in equation (62) over any 

element in terms of the Hermite interpolating polynomials 8,(.x) , as 

@ = B,(x>x. , i = 1,4 , 1 (63) 
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where the parameters x. 1 represent the unknowns (the influence coefficients) 

determined for each element. The Hermite polynomials are cubic curves that are 

defined over each element and that satjsfy the following four sets of boundary 

conditions at the ends of the interval (O,h) . (Since the polynomials are 

cubic, we can specify four end conditions in each interval.) 

Boundary 
Condition 

Bi (0) Bf (0) Bi (h) B;(h) 

6, (4 1 0 0 0 

6, w 0 0 1 0 

B, cd 0 1 0 0 

B, (xl 0 0 0 1 

Thus, each polynomial satisfies one unity boundary condition and three homo- 

geneous conditions. Algebraically, these polynomials are defined as 

B,(x) = 1 - 3(x/h)2 + 2(x/h)3 , 

6,(x> = 3(x/h)2 - 2(x/h)3 , 

B,(x) = [x/h - 2(x/h)2 + (x/h)3] h , 

B,(x) = [-(x/h12 + (.x/h)3 1 h . 

(64) 

(65) 

(66) 

(67) 

By the usual Galerkin procedure, we choose a weighting function $ and 

require that the equations, after being multiplied by $ , be satisfied on the 
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average over the interval (P,h) corresponding to one element. Thus, 

we require 

“I- oh(@xx~ - Q/J> dx = 0 

and immediately integrate by parts to give 

/ 
oh(@x$x + @$)dx = B.T. , 

(68) 

(69) 

where B.T. refers to boundary terms occurring at the ends of the element. 

We now choose the weighting function $ to be equal to the polynomial B i 

corresponding to the appropriate degree of freedom. Then, using the numbering 

system defined below for a single element, 

4 

we compute the influence coefficients, in turn, for the function and its 

derivative at the right end and, then, at the left end. 

The influence coefficients for the function G2 at the right end of the 

element are given by 
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+(8i2 + 8z,>X2 + (BiBi + B,B2)X3 

+(BiB; + B4B2)~4 1 dx = B-T* 9 

where the weighting function for point 2 is 8, . After performing the indi- 

cated integration, we obtain the following relation between the four values 

(&-+,)X3+(-&+)X4=B.T. (71) 

If we repeat this integration for the degree of freedom number four 

(4x at the right end) here, using 6 4 as the weighting function, we obtain 

a similar relation, and similarly, for the two degrees of freedom at the left- 

hand end. The results are summarized in figure 7. 

Having derived the influence coefficients for each degree of freedom 

in terms of the other degrees of freedom in the same element, we now combine 

two elements and obtain the appropriate influence coefficient for the center 

point in terms of the six (total) degrees of freedom in the two elements. De- 

fining two elements A and B and using the following notation, 
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A B 
x Y n x 

0 1 2 3 

(3 4 
X 

5 6 

we obtain, for the second degree of freedom (for the value of $ at the 

center), which is the left end of element B and the right end of element A: 

+ ( -~-~)x5+(~+gJx2+ 
@-gx3 +(gg+$Jx5 + (-g$+gx6 = 0 , (72) 

which is an equation for X2 in terms of Xl' X3' X4' X5' and x6 . A similar 

application gives a second equation for degree of freedom number five, which 

corresponds to the derivative @ at the intersection between the two elements. 
X 

The influence coefficients for @ are summarized in figure 8A, along with 

similar results that have been obtained with the least-squares procedure. The 

results obtained from the Hamiltonian method are identical to those for the 

Galerkin procedure and have not been rewritten in figure 8A. Figure 8B 

gives the same comparison of influence coefficients, but this time for $x . 

The supersonic (initial value) case can also be computed from the 

results shown in figure 7; but, when the two elements are considered together, 

the downstream element must not have any effect on the solution for the in- 

fluence coefficients corresponding to the central point. Again, using the 
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notation from the sketch on the previous page, we write the relationship for 

Xl! in the supersonic case as 

(&-$-)x4 + (-&-$+o = B.T. . (73) 

These Galerkin results for the supersonic problem are summarized in 

figure 9 in a format identical to that used for the subsonic case (figure 8). 

Again, Hamiltonian and least-squares results are also shown. Note that in the 

initial value case the Hamiltonian results (where the method of inverse shooting 

has been used) differ from the Galerkin results. Also note that the downstream 

points do not contribute to the solution at the central point. 

Influence coefficients for a two-dimensional example. - Similar tables for 

a two-dimensional case (partial differential equation) are given in figures 10 

through 12. For this case, we have considered the Laplacian equation: 

4 xx +(I =o 
YY 

for the elliptic case, and the wave equation, 

-exx + 9, = 0 

(74) 

(75) 

for the hyperbolic case. Again, these tables are based on the Hermitian inter- 

polating polynomials. 
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Chan and Brashears (ref. 45) have applied a least-squares procedure to 

transonic flows. In this work, the upstream effects are zeroed out in the 

supersonic region. This procedure is identical with the one proposed by 

Zienkiewicz and Lewis for the wave equation (see ref. 43). 

Schemes for Transonic Flow 

In a previous paper, Hafez, Murman, and Wellford (ref. 44) derived two 

distinct finite-element schemes for the transonic small-disturbance equation. 

These two schemes used different discretization criteria for their development. 

The first scheme uses a finite-element technique in the space-like variable 

(y) and a finite-difference representation in the time-like variable (x). The 

only difference between this finite-element scheme and Murman's scheme is in the 

mass matrix. If a lumped mass is used, the scheme reduces identically to 

Murman's; if a consistent (Graham) matrix is used, the schemes remain distinct. 

In the consistent-mass matrix formulation, three y levels of the x equations 

are coupled. Comparison with Murman's results show that the two calculations 

are almost identical (differences occur only in the fourth decimal place); 

I.e., the lumped-mass (finite-difference) and the consistent-mass (finite 

element in space) methods give comparable results. 

The second scheme described by Hafez, Murman, and Wellford is the "inverse 

shooting" technique, which uses a finite-element discretization in both the 

space-like and the time-like variables. Unlike the first scheme, the inverse 

shooting scheme is not unconditionally stable. We can show this readily by 

writing the scheme in the form of Von Neumann and Lees: 

Kg4xx = 4) 
YYC.D. 

+ h2@ 
C.D. XXYY ; Kg = IK-cbxl , (76) 

48 



where the subscript C.D. refers to central difference (see ref. 46). Von 

Neumann and Lees showed that this equation was unconditionally stable only 

when w 5 4 . The corresponding value for w in our scheme is w = (KR + 1)/6. 

By analogy to the system of Von.Neumann and Lees, we see that our system is 

non-dissipative and that it has dispersive properties that depend on w . 

Because of the conditional stability of equation (76), it is evident 

that terms proportional to $I 
XXYY 

and @ yyx (a d issipative term) are 

needed. In particular, if these terms are added with the proper multipli- 

cative coefficient, the scheme becomes identical to the backward-difference 

scheme used by Murman. If linear shape functions and rectangular elements are 

used, the finite-element representation of both Q and 4 becomes iden- 
XXYY YYX 

tical to their counterparts obtained from centered finite differences. When 

higher-order shape functions are used for the finite-element representation, it 

no longer remains obvious that these two terms sufficiently guarantee stability. 

Fortunately, however, Showalter (ref. 47) has obtained a rigorous answer to 

this question. He studied two nonstandard methods for integrating the initial 

value problem 

B$ + A$ = f (77) 

in a Hilbert space using Galerkin projection techniques. The first method, when 

applied to the equation 

3% 
at2 

-A$=f (78) 

(where A refers to the Laplacian), is 
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&I 
at2 

- EA j$ - A+ = f(x,t> , 

where E is restricted to be positive. The second method, applied to the same 

equation, has the form 

a24 
-a 

at2 

EA h 
at2 

- A$ = f(x,t) . (80) 

In this model, these regularizations represent artificial viscosity or artificial 

inertia. In our simple example, A is replaced by a2/ay2 so that the first 

term is QI 
YYt 

and the second term is Cp 
YYtt ' 

Some numerical examples, using 

artificial viscosity and artificial inertia, that have been obtained from our 

finite-element model are shown in figures 13 and 14. Again, we have used line- 

relaxation methods to obtain these solutions. 

As discussed in our previous work, the introduction of blending elements 

is crucial to the success of a transonic-flow computational technique. For 

example, if we use a centered finite-difference approximation of @ in the 
YY 

sonic element rather than a Galerkin approximation, the calculation sometimes 

diverges, and, even when it does converge, more iterations are required. Some 

examples of this behavior are given in figure 15. 

The second blending element used in these calculations is a finite-element, 

shock-point operator, whose specific form is shown in the sketch below. 
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The same results can be obtained with locally normal shock-fitting, namely 

uj+l 
X x 

"j I( x 

x X 

where 
uj ) uj+l ' uj-l are velocities that satisfy the normal shock polar 

relation. These results are shown in figures 13 and 14. 
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Elliptic Methods 

A Mixed Variational Principle for Transonic Flow 

When developing finite-element approximation methods, we might benefit 

from a variational development of the appropriate differential equations. In 

this variational development, we introduce functionals whose Euler equations 

are equivalent to equation (1). Initially, we introduce the "primal functional" 

J (0) where $I is the perturbation velocity potential. This functional is 

given as follows: 

1 -- 
J 6 i-2 K2((bxj3dx dy , (81) 

where Kl = 1 - Mf , K2 = Mi(l + y) . For the moment we disregard the boundary 

conditions. For simplicity, we consider the Dirichlet boundary conditions (4 

is specified on all boundaries). The first variation of the functional J(G) 

is defined for arbitrary n satisfying the boundary conditions by 

sJ($) = LIM J(@ -t- ET)) - J(O) . 
E+O E (82) 

The second variation s2J($) of the functional J($) is defined similarly. 

By setting the first variation of the functional equal to zero and applying 

the fundamental theorem of the calculus of variations, we get the following 

result: 

Theorem 1: The Euler equation corresponding to J(e) is 
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(K1 -K2 ~x)~xx+~yy=o l 

Taking the second variation of J(Q) , we get 

Theorem 2: For arbitrary ?'I satisfying the boundary conditions 

62J($) = /$Kl - K2 Gx)17; + $jdx dy 

(83) 

(84) 

From equation (84) we determine a basic property of the variational method. For 

subsonic flow, 62J(@) 10 because Kl - K2Gx > 0 . But, for strongly super- 

critical (transonic) flow, K1 - K2ex < 0 for many points in s2 . Thus, 

the second variation of the functional J(G) has no definite sign for the case 

of transonic flow. A method for iteratively approximating this problem (essen- 

tially, the variational analog of the standard procedure of shifting the 

nonlinear term to the right-hand side of the equation), however, is to find the 

critical points of a new functional J($ (n+l) > , which is defined as follows: 

y($,(‘l+l>) = +/ Kl@y1’2 + $y1’2) dx dy 
R 

1 -- 
/ 2 i-2 

K2@p)' Q(n+l) dx dy . 
X 

The Euler equation of this functional is 

K $)(n+l) + $cn+‘> = K $,b) $(n) 
lxx YY 2x xx - 

(85) 

(86) 
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The second variation of 5($'n+1)) is 

$ jc4 (n+l> > = j- (K1 n; + + dx dy - 

Since Kl > 0 , we get 

62 J(p+l)) 2 0 , for all n . 

(87) 

(88) 

Thus, in the iterative scheme, the second variation s2y is always positive, 

while in the original problem the second variation 62J is indefinite. This 

inconsistency serves as a mathematical (rather than physical) explanation of 

the nonconvergence of iteration equation (86) to supercritical flow solutions 

observed by Martin and Lomax (ref. 2) and Chan and Brashears (ref. 45). The 

discrepancy noted above is the motivation for the approach developed in this 

paper. 

A mixed formulation can be developed by letting 4 be the perturbation 

velocity potential and by letting u be the x component of the perturbation 

velocity. Then; a mixed function I($,u) associated with the small- 

disturbance transonic problem is given as follows: 

I($,4 = $ / (K1$; + 4+x dy 
R 

1 -- J 2 R 
K2u2Qx dx dy + $ J n K2u3 dx dy . (89) 

We define the first variation of I with respect to 4 and u by 6+1 and 

sul . By setting sGI = 0 and 6uI = 0 , we obtain the following result. 
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Theorem 3: The Euler equations corresponding to the functional I(@,u) are 

Kl@xx - K2uux + $ 
YY = 

0 (90a) 

u-$x=0 (90b) 

The second variations of I with respect to $ and u are denoted by 6*1 
a 

and 6;I , respectively. From equation (89) we obtain the following. 

Theorem 4: The second variations of the functional I(@,u) relative to the 

parameters 41 and u are 

$1 = / (Kin; + +dx dy , 
‘cl 

(1 = / 
'51 

K2,.bxn2 dx dy > 

where n is a variation in @ or u . 

Clearly, the second variations behave as shown below: 

(91a) 

(91b) 

(1 > Cl Gx positive , 

(1 < 0 $ x negative . 
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The prese"t formulation thus allows us to divide the domain of the flow R into 

regions (usually two in number) in which the sign of the second variation of the 

function with respect to $I and u is always known. I" contrast, if we use the 

primal formulation for transonic flow, the sign of the second variation is in- 

definite so it is not possible to specify specific regions in which the second 

variation has a specific sign. Suppose we let Ql be the part of the domain R 

in which I$~ is positive and R 2 he the part of the domain R in which I$ x 

is negative. Then Q = nlLl R2 . IJe let Il(@,u) be the functional I restricted 

to % . We let I,($,u) be the functional I restricted to Cd2 . The", 

the solution to problem (1) can be characterized as the set (@*,u*) such that 

MLN MN I,(I$,u) = I,(I$*,u*) (92a) 
u 4 

EliU NIN I,($,u) = I,($*,u-) . 
" 4 

(9%) 

In Theorem 3, we have verified that the correct differential equations 

[corresponding to equation (l)] result from the mixed variational principle. 

We now rewrite the functional to include the proper boundary terms. In approxi- 

mation procedures, the set of boundary conditions for the infinite domain Q 

is normally replaced by the following set on a finite domain (also called 

R ): 

(1 + 4,) 2 - a$ = 0 , on the airfoil (93a) 

$ = 0 , on y = 0 upstream and downstream of the airfoil (93b) 
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Q = far-field solution . (93d 

For simplicity, we neglect @x relative to 1 in equation (93a). The resulting 

boundary condition is 

Gy = 2 , on a slit 
a% l 

(94) 

This boundary condition can also be handled iteratively as in Chan and Brashears 

(ref. 45). We included this iterative application of the boundary condition 

in our analysis, but we do not discuss it here. Then, we let ds be the arc 

length along as in x,y space. We now introduce a mixed functional 

W,u) , which includes the natural Neumann boundary condition along as2, : 

%,u) = + / (K#; + +dx dy 
n 

1‘ -- 
1 2 R 

K2~2@x dx dy + $ / R K2u3 dx dy 

-J 
a% 

2 @(s) dg . (95) 

Taking the first variation of I($,u) with respect to @ , we obtain, as Euler 

equations, equation (90a) and 

(96) 
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Since the functional I($,u) is developed for the small-disturbance formula- 

tion (which assumes a very thin body) to within the order of the approximation 

used, @-zCp n Y - 
Thus, the boundary condition [equation (94)] is satisfied. 

When varying I(@,u) , we obtain one additional integral associated with as2, . 

This term occurs when we integrate the second term on the right in equation (95) 

by parts in x , and we obtain an integral over dy (the thickness of the air- 

foil). Since in small-disturbance theory we assume the thickness of the airfoil 

is small, we can assume this term is negligible. In fact, in most finite- 

difference approximations, the boundary conditions are applied not on the body, 

but on the chord. Then, the integral in question disappears. 

A Mixed Finite-Element Model For Transonic Flow 

To develop a finite-element model for transonic flow, we divide the 

domain 52 into finite elements R e ' Then, 

E 

R=UR, 
e=l e 

where E is the total number of elements in the domain. On each domain 

ii! e we introduce an approximation for the potential function @ and the per- 

turbed x velocity component u of the following form: 

O,(X,Y> = Yi(X’YV. , 1 (974 

(97b) 
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where Yi(X'Y) and Bi(x,y) are finite-element interpolation (shape) functions, 

and $J and U are values of the potential function @ and the velocity u at 

the nodes of the element. 

The index notation (involving i) in equation (97a) and (97b) implies that 

a summation should be performed over the number of nodes in the element. In 

terms of (Qe,Ue) , the functional y takes the following form: 

y(@eJJe> = + Kij QiQj - $ LijkuiujQk 

+LM 3 ijk 'i"juk 

- F. 0. , 
J J 

where 

K = ij J R 
(Kl Yi Y. + Yi Y. ) dx dy , 

e x Jx y Jy 

L ijk = R J e 
K2 Bi Bj yk dx dy , 

X 

M ijk = J Re K2 ‘i$ Bj 8k dx dy , 

F 
j= J %' dE. 

an dx j 
1 

(98) 
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The finite-element analog of the variational procedure [equation (92)] is to 

require that the functional I(Qe,Ue) have a stationary value relative to 

variations in @ 
j 

and U i‘ We set 

a%Qe,ue) 
a@ =Os 

j 

aI(ae.ue) 
au =o. 

i 

From equation (98) in conjunction with equation (99), 

K @.=lL ij i U.U + F 2ikjik j 

aI 
x 

i 
= -LijkUjok + MijkUjUk 

(9%) 

(9%) 

(lOOa) 

(100b) 

= 0 . 

Equations (lOOa) and (100b) represent the finite-element equilibrium equations 

for a single element Re . The corresponding equations for the entire domain 

52 are obtained with standard assembly techniques (see ref. 22). 

Dual Iterative Solution Algorithms 

The use of a combination of direct solution and gradient algorithms to 

solve the algebraic equations obtained from mixed-finite element models was 

initially proposed by Ciarlet and Glowinski in conjunction with the biharmonic 
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equation (unpublished data from P. Ciarlet and R. Glowinski, 1975). These 

methods have become known as "dual iterative methods." We adopt the same 

approach here. The variational problem [equation (92)] involves a mini- 

mization procedure in $I and a minimization-maximization procedure (in 

different domains) in U . We solve for the 4 variable, using a direct 

solution method, since $1 is always positive, and we solve for the U 

variable, using a gradient method, which locally accounts for the sign change 

of $1 . We thus introduce the following direct-gradient algorithm for the 

small-disturbance transonic flow calculation (for p = constant > 0 ): 

K ,h+l) = .L L 
ij i 

u(n)u(n) + F 
2 ikj i k j ' 

,(n+l) = ,(n) + C o aI(n> , 
j j au 

j 

where 

a$n> 
av. = -L ,(n> 

jik i 'k 
(n+l> + M ,(n),(n) 

J 
jik i k 

and 

C=l 

c = -1 

$ -6.d 
uI 50, 

j 

$ --b-d , o 
0 ’ 

j 

(101a) 

(101b) 

where 
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3 +d a2+) = 
u. 

= -L @(n+l) 
jjk k + 2M 'u b) 

J 
jjk k (102) 

for each element. From (100b) we see that the gradient of y relative to Ui 

is zero if Uj = 0 for all nodes in the element. In fact, we see that the 

variation of f with U for positive $ varies, as shown in the sketch 
Y 

below. 

1 uJ> 

U 

To prevent convergence of the algorithm to the trivial solution U = $x = 0 , 

we choose C as shown in the chart below: 

I 4 Positive __ I n 

%I (1 C 

negative 1 
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(I Negative 
X 

%I ($1 C 

negative positive 1 
negative negative 1 
positive negative 1 
positive positive -1 

We treat the gradient solution step as the integration of a time-dependent 

equation in the incremental time parameter t 

XJCn) 
+= p a+) 

Czau9 
j 

(103) 

where At is the increment of incremental time t , or 

g = f(uk(n)) . 

Numerical experiments have shown two deficiencies in the iterative algorithm. 

First, for transonic flow, there is no convergence to shock-wave solutions. 

Second, the iterative scheme seems to oscillate about the solutions. 
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Artificial Viscosity Models 

To obtain the correct generalized solution for the transonic flow problem, 

we introduce artificial viscosity. Let El be a positive constant. The gra- 

dient algorithm augmented by artificial viscosity is 

CP Ut = L\t u("-$x> (104) 

We use equation (104) in regions where @x is positive (C = -1). Differen- 

tiating equation (104), with respect to x , introducing the result in equation 

(gOa>, and assuming U z 4 x ' we obtain the following equation: 

Kl%x + @ 
K2E1 

= K2+x@xx - 2 4 
K2At 

- - YY xxx 2P cp xxt ' (105) 

If we assume that the iteration converges, the last term on the right goes to 

zero, and the resulting equation is 

KIGxx + + 
K2E1 

YY = K2@x@xx - 2 @xxx ' 

where 4 
XXX 

is the artificial viscosity term. This term damps the $ 

equation. To provide convergence in the U equation, we introduce another 

viscosity term into equation (104). For a positive constant El (used 

only when $ 
X 

> 0 >, we get 

(106) 
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CP Ut = z uoJ-~x> 
pEl PC2 -- 
At 'x + At ‘xx l 

(107) 

The last term on the right introduces a viscous term into the U equation. In- 

troducing a finite-element analog for the last two terms on the right-hand 

side in equation (104) and incorporating these into equation (lOlb), we obtain 

the following expression: 

U(n+l) = ,(n) + cP aI(n) 'sl (n) 
j h - - F D..U. 

au 
j iJ i 

oE2 (4 -FE-U. , 
iJ i 

(108) 

where 

D = 
ij J R 

e 
‘ix6-j dx dY Eij = Jo BixBjx dx dy . 

e 

We developed a computer program DUALIT to solve the equations formulated 

above. This code contains all of the features of the subsonic programs, 

SUBSONl and SUBSON2, described in the Appendix. . 

Numerical Results 

We did test calculations for flow about a 6-percent parabolic-arc airfoil 

with the mesh of eight-node serendipity elements shown in figure 16. For 

these calculations, &l = 1.4 x 10 -2 and c2 = 0.7 x lo-3 . In figure 17 
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we compare the resulting Cp distribution to the results of Murman for 

K = 1.8 (Moo = 0.875) . 

A GENERAL SHOCK-FITTING PROCEDURE FOR FINITE ELEMENTS 

A more general shock-fitting procedure, which was previously used by 

Wellford and Oden in elastodynamics (see ref. 48), can be applied to transonic 

flows. We demonstrate this application by starting from the unsteady 

transonic small-disturbance equation from Cheng and Hafez (ref. 14): 

@xt = (K- $x)@xx+@yy l (109) 

We obtained this equation directly from the unsteady velocity potential equation 

by ignoring the "high frequency" term (@,,) , and we can also use it to re- 

present the iterative (relaxation) procedure (except perhaps with a different 

value of 12). We proceed with development of our general shock-fitting pro- 

cedure by obtaining the weak solution of this time-dependent equation, which 

will enable us to predict the shock's movement (both its displacement and 

its speed). 

We represent the shock shape by the function 

f(x,y,t) = 0 , 

which we assume can be inverted to give the x position of the shock 

x - xD(y,t) = 0 . 

(110) 

(111) 
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Using this nomenclature, we write the jump conditions admitted by the weak 

solution of the unsteady equation as 

(112) 

where u II represents the jump across the discontinuity. With equation (ill), 

we can rewrite equation (112) as 

and defining the speed of the shock as S = ax/at , we have 

(113) 

(114) 

The corresponding jump condition admitted by weak solution for the irrotation- 

ality condition 

@ XY = +yx 

is 

Uf,9, - f,+,n = 0 

or 

u9,n +g u$,n = 0 . 

(115) 

(116) 

(117) 
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Combining equations (114) and (117) gives 

u@,n sa = - uK@, - 40, 2n($)' I[o,n 

or, in its final form, the equation for the speed of the shock is 

ax 

If the flow field approaches a steady state, the shock speed vanishes so 

that in the steady state, equation (119) reduces to 

<K - @,> I[@,] + $ 2 = 0 , ( ) 

which is of course the jump relation obtained from the steady-state 

equations. 

The strength of the unsteady shock b,n can be evaluated from the 

Hadamard kinematical compatibility equation 

d 
dt 

(118) 

(119) 

(120) 

(121) 

where the subscript S refers to the shock. For our case, F=@ 
X 

, hence, 
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ddfumxns= p&J+% [fit] s+% p2&’ 

where 

dxD 
us = dt , vs = dyD 

dt . 

(122) 

(123) 

The shock jump relation can be incorporated into a finite-element procedure 

by applying finite differences in time to equation (119) in a manner analogous 

to that of Wellford and Oden: 

Xn+l <K - Ox> (I$,] + $ 
2 n 

- xn = 0 I , (124) 

where f3 = At/cl . (Note that we can use a similar formula for relaxation 

procedures, except that now 6 corresponds to a relaxation factor.) A similar 

finite-difference procedure can be used in conjunction with equation (122) to 

update b,n . As in most numerical procedures, an explicit technique of the 

type suggested in equation (124) imposes a maximum allowable step size because 

of stability considerations. 

As a passing remark, we note that when the transition from subsonic to 

supersonic (or from supersonic to subsonic) is smooth, the present finite- 

element algorithm is consistent since we automatically require that 4 
YY = 

0 . 

A similar shock-fitting procedure can also be applied to the full poten- 

tial equation: 

P, = -(PLox - (PV), 9 (125) 
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where, because of the irrotationality assumption, we can express the density 

p as a function of the velocity only as follows: 

P = P(U,V) - 

Defining the velocity potential Q as 

u= Qx 9 v = @y 

so that 

%y = @yx 

we can write the expression for the weak solution of equation (125) as 

upft + pufx + pvfyn = 0 , 

where 

(126) 

(127) 

(128) 

ft : fx : fy = b,n : u+,n : b,n . 

70 



Then, following the development of the small-perturbation equation, we arrive 

at an analogous expression for the shock velocity and strength. Although this 

procedure appears quite promising, it has not yet been tested in either a finite- 

difference or a finite-element formulation. 

EXTENSIONS TO THE FULL POTENTIAL EQUATION 

Although the full velocity potential equation is algebraically more com- 

plicated than the small-disturbance equation, the crucial factor that makes the 

full potential equation more difficult to solve is that the direction of the 

velocity vector in the full potential case is not known. Jameson (ref. 3) has 

developed some type-dependent finite-difference schemes and some relaxation 

techniques that work well for the full potential equation, but the corresponding 

finite-element analog is not obvious. 

Hyperbolic Methods 

One exception to this difficulty is when the equation is formulated in its 

complete unsteady form. In this case, the equation is always hyperbolic, and, 

as a result, the use of type-dependent differencing (which relies on a knowledge 

of the orientation of the local velocity vector) is not required. Consequently, 

finite-element techniques (in space) can be applied in a straightforward manner. 

This capability for bypassing type-dependent differencing and retaining central 

differences throughout the flow-field is not limited to the unsteady Euler 

formulation; other hyperbolic schemes can also be used. 

As a first example, we consider the fully hyperbolic scheme 

Ut = (PU), + (PV>, (129a) 
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Vt “U -v . 
Y x 

(129b) 

Magnus and Yoshihara (ref. 12), using a finite-difference technique, solved this 

formulation numerically, but abandoned it because relaxation methods (velocity 

potential) were much faster. They used the Lax-Wendroff finite-difference 

scheme, with a special mesh arrangement near the airfoil leading edge. 

The weak solution consistent with equations (129a) and (129b) is 

IUD ft - upuj fx - upvn fy = 0 . (130) 

Note that this weak solution is different from the one discussed in the proceed- 

ing section where the continuity equation 

P, + CPU>, + (PV), = 0 (125) 

was used. Also, note that the flow field described by equations (129a) and (129b 

becomes irrotational only in the limit of a steady solution. 

As indicated above, finite-element procedures can be applied directly to 

hyperbolic schemes such as these. In particular, we can take the Lax-Wendroff 

scheme directly to a finite-element formulation (finite element in space, 

finite difference, or iterative, in time) and thereby introduce the artificial 

viscosity that is necessary for the convergence of the hyperbolic formulation. 
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or 

Elliptic Methods 

We begin by considering the full potential equation 

(. ) lU -- a: @xx a2 
-uv($xy+ 1-$ +n=o 

( ) a 

(P4J,>, + (P4,>, = 0 

(132a) 

(132b) 

and identify three classical schemes that can be used to linearize the equation 

as follows: 

a. Picard method (linearizk&on by freezing coefficients), 

c 1 - G 2 1 q);; _ - 2uRvn n 2 $xy n+l + 1 -- vn 2 

i 1 

$n+l = 
n2 YY 

o 

n a a a 

or 

(133a) 

(133b) 
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b. Rayleigh-Janzen method (linearization about the equivalent incompress- 

ible flow), 

4 ;y 2unvn 
n2 

+ 0;; 
n2 n = - ( - - U 
n2 4xx n2 4; - lL- 4n n2 yy a a a 1 

or 

C. Newton-Raphson method, 

Let 

and 

4 n+l = en + @I 

J&$ = -R#) 

or JtJ n+l = Jc$~ - R@> 

(134a) 

(134b) 

035) 

(136a) 

(136b) 

where J is the Jacobian and R(Gn> is the residual. 

The Rayleigh-Janzen scheme is the one used by Jameson (ref. 3) and it converges 

only for subsonic flows. For transonic flows, Jameson uses a two-step iterative 

procedure, in which a fast solver is foilowed by a line relaxation procedure. 

The first step can be calculated by finite elements. Although there is no analogy 

for the second step, we discuss some related work below. 
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Application of Optimal Control Methods to Transonic Flow 

Following Glowinski and Pironneau (ref. 49), we consider the minimi- 

zation problem, 

(4, - u12 + (4, - v12 

with the constraints 

@xx + Qyy) = - (K - u)ux + vy 
1 

+ux+v . 
Y 

(137) 

(138) 

Wellford and Hafez (ref. 50) used a similar procedure based on a mixed 

variational principle, which allowed special treatment of the supersonic region. 

Thus, instead of constructing a functional whose Euler equation include the 

irrotationality condition and applying the continuity equation as a constraint 

[as in equations (137) and (138)], they constructed a functional whose Euler 

equations included both the irrotationality condition and the continuity 

condition. This functional can be written in terms of @I and u as 

I($,u) = /-J [*(KG; + 4;) - + u2+x + $ u3] dx dy . 

Then, again using the gradient method, we obtain the alternative scheme, 

+ 4yy - uux , 1 
6u = -w’u(u - Q,> + EIUx + E2Uxx . 

(139) 

(140a) 

(140b) 
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In their work, Wellford and Hafez require O'U to be positive by choosing 

w ' negative when u is negative, while choosing w to be very large, so 

that equation (140a) becomes 

JQxx + 4 = uu 
YY x l 

(141) 

Note that the term E2”xx 
is necessary to prevent the iteration from diverging. 

The artificial viscosity term will ensure proper behavior, including the 

compression shock (and excluding the expansion shock), in the supersonic region. 

These two methods can also be applied to the full potential equation. 

Glowinski and Pironneau minimize the functional 

4,12 + (v - 4,) 2 dx dy 1 
with the constraint 

4 xx+4 = w I (Pdx + CPU) ) 
YY Yl 

+ux+v 
Y 

and 

p= 1+y-l 
[ 

2 (u2 -I- v2) A . l- 

(142) 

(143) 

(144) 

The functional in equation (142) can also be solved by a mixed variational 

principle in terms of + , u , and v , by a direct extension of Wellford and 

Hafez's work. Performing the required extension leads to 
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where 

(145) 

C = l/yMi (146) 

The minimization of equation (145) yields the following three expressions: 

From 31/a@ = 0 , we have 

h (@xx + 4yy) = [ CPU>, + (PV), ] +A[ux+vy] ; 

from aI/& = 0 , we obtain 

h(u - a),> = PM, - u) + P,W X - u2> + Pp$ 
Y 

-v2) ; 

and, from aI/av = 0 , we obtain 

X(v - @,I = P(d), - v) f PU(U@ X - u2) + PV(VG 
Y 

-v2> , 

(147a) 

(147b) 

(147c) 

where X is a free parameter. 

Additional regularization terms like those introduced for the TSDE are 

needed for the convergence of iterations based on this scheme; however, in this 

scheme, regularization terms are needed for both the u and the v equations. ~ 
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One approach is to use, in the supersonic region, artificial viscosity terms 

analogous to those used by Jameson in his finite-difference formulation. 

For the subsonic region, the elliptic equation may be put into the Poisson 

form and solved iteratively as before. Again, convergence is guaranteed for the 

elliptic region; hence, in the subsonic region, I and I U V can be replaced 

by the simpler relations u = @x and v = $I 
Y 

to save computer storage space. 

SUMMARY AND CONCLUSIONS 

We have presented a review of finite-element and finite-difference 

techniques for transonic flow calculations. For the transonic small-disturbance 

equation with linearized boundary conditions, Murman's finite-difference scheme 

is preferred over finite-element procedures, especially if some of the more 

recent acceleration procedures (e.g., multi-grids) are used. Such a comparison 

with finite elements is based on rectangular elements with linear shape functions. 

If higher-order shape functions or mixed formulations with fewer elements are 

used, and if a rapid, direct inversion technique is used, the finite-element 

method becomes more attractive. Treatment of the nonlinear mixed equation must 

include the transition from one region to another, and to allow only for a 

compression shock; the technique must have some provision for excluding 

expansion shocks. 

Hopefully, finite-element methods will retain their advantages in the treat- 

ment of boundary conditions for the full potential equation. An unsteady 

(hyperbolic) approach for applying finite-element procedures to the full potential 

equation has been outlined. Without efficient methods for accelerating the 

iterative procedure, however, this method will not be economical. 
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Finally, we have looked for optimal control methods for transonic flow; 

but, without the inclusion of artificial viscosity or shock-fitting procedures, 

we do not expect the calculation of transonic flow fields with large supersonic 

regions to be successful. 

Flow Research Company 

21414-68th Avenue South 

Kent, Washington 98031 

June 14, 1978 
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APPENDIX 

FINITE-ELEMENT SOLUTIONS USING GAUSSIAN ELIMINATION 

(FRONTAL SOLVER) 

As part of this research, we developed two codes to calculate subsonic flows 

using standard finite-element techniques. Both programs solve incompressible 

and small-distrubance flows about arbitrary bodies, and both could be easily 

extended to a full potential formulation. 

The first program (SUBSONl) uses two-dimensional isoparametric elements 

of the serendipity type. 

($ modeled at all nodes) 

The second program (SUBSON2) uses the tensor product of Her-mite polynomials 

mapped to an irregular region with auxiliary mapping points (denoted by x). 
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These two codes are based on the following system of routines: 

11 ZIPP 

The capabilities of the routines, and, therefore, the program is indicated 

in the following descriptions: 

MESH2D - Generation of mesh of elements with curvilinear sides 

for arbitrary domains 
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PMESH - Mesh plot 

ITER - Iterative driver for solution of subsonic or transonic 

flow problems 

STIFF - Generation of matrix equations for each element 

ZIPP - Frontal solution (direct) routine for a symmetric matrix 

UNZIPP - Frontal solution (direct) routine for a nonsymmetric matrix 

GRAD - Computation of the gradients of the solution at the Gauss 

points 

As an example, we computed the incompressible potential flow about a 0.03 

parabolic-arc airfoil. In each case, the model contained approximately 

600 degrees of freedom. The first model had the four-node serendipity element 

with 28 elements in the x direction (x = -1.5 to x = 1.5) and 20 elements in the 

y direction (y = 0 to y = 2). There were 12 elements on the airfoil. 

As a second example, the same case was computed with the eight-node 

serendipity element with 18 elements in the x direction (x = -1.5 to x = 1.5) 

and 10 elements in the y direction (y = 0 to y = 2). There were 6 elements on 

the airfoil. 

The solution time for the linear algebraic equations (using the frontal 

solver) was 30.15 C.P. seconds for the four-node case and 29.44 C.P. seconds 

for the eight-node case on an IBM 370-158. This time is equivalent to approxi- 

mately 7.5 C.P. seconds on the CDC 6600 (using a factor of 4 for conversion). 
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Similar runs using line-relaxation methods to solve the same problem (as described 

in the section entitled Extensions to the Full Potential Equation) have taken 

approximately 7.0 C.P. seconds for 70 relaxation sweeps on the CDC 6600. Thus, 

at least for linear problems, the two solution schemes have equivalent computing 

times for the moderate-sized examples tested here. 
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